

Phil L. Bruckner, Professor Department of Plant Sciences & Plant Pathology Montana State University Bozeman, MT 59715-3140 bruckner@montana.edu PHONE 406-994-5127, FAX 406-994-1848

MEMORANI FROM:	<u>DUM</u>	Phil Bruckner & Jim Berg, Winter wheat breeders						
DATE:		January 7, 2019						
RE:		Licensed release of MTCS1601 Clearfield hard red winter wheat (cross ID 07X349D10-1)						
<u>Pedigree</u> :		MTCS1601 resulted from a 2007 cross of MTS0531 [HW winter experimental line with intermediate stem solidness] to a BC5F1 (equivalent) herbicide-resistant plant selected in the 2007 gh from Clearfield population 06X435 (segregating for two <i>als</i> genes conveying tolerance to imidazolinone herbicides) after application of an 18oz/acre rate of Beyond herbicide + UAN +NIS by Ed Davis.						
MTS05	31/7/MT	The expanded pedigree for MTCS1601 is FS0532/6/96X17E69/3/MTCL0309/CDC Teal 11A//MTW01143/4/MTCL0510/5/MTS0531						
		Herbicide resistant trait donors for this population are MTCL0309 (<i>als</i> 1) and CDC Teal 11A (<i>als</i> 2). The intent of this cross was a solid-stem line with 2 gene herbicide resistance.						
Recommenda	ition:	Licensed release. [Rationale: contains patented traits] <u>Name:</u> To be determined						
Selection hist	ory:	Following the 2007 cross, these are steps in development of MTCS1601:						
2008BZ 2009FE	F1 pop All For herbici jointin F2 pop	pulations grown in field and harvested in bulk. It Ellis Clearfield breeding nurseries from 2009 to 2018 were sprayed with Beyond ide at a 2X rate (12 oz./acre) + 1% MSO and 1.5% v/v UAN in the spring prior to g. Phenotypic selection against herbicide susceptibility was applied in each year. bulation grown, harvested in bulk. After seed sieving, plump seed fraction advanced.						
2010Post 2011W	F3 pop F4 bull mechai	bulations grown, herbicide screened, bulk advanced. k population grown at Williston, heads from surviving plants harvested in bulk after nical height reduction.						
2012FE 2013FE	F5 bull F6 hea	k population grown at Ft.Ellis, ~110 heads selected. drow at Ft.Ellis, phenotypic selection for stem solidness, disease and herbicide nce_agronomics_07X349D10 selected_four heads collected_plot harvested in bulk						
2014FE	F7 hea and ha	drow reselection families grown at Ft.Ellis. 07X349D10-1 solid stem headrow selected rvested.						
2015-Multi	F8 soli Sawfly	d-stem, herbicide-resistant selections grown at five sites in Single Row Observation and Clearfield nurseries. Based on visual evaluation and selection across all sites,						

07X349D10-1 was selected and designated MTCS1601.

- 2016-Multi MTCS1601 (F9) tested in the MSU Sawfly trial from 2016 to 2018 (16 location years) and the MSU Clearfield Qualification trial from 2016 to 2018 (7 LY). Milling & baking quality evaluation initiated.
- 2017-Multi MTCS1601 (F10) tested in MSU Advanced trials (6 LY). M&P heads selected from FE bulk.
- 2018-Multi Breeder seed from 2017 FE bulk increased at Ft.Ellis. MTCS1601 (F11) tested in Montana Intrastate (9 LY) and Off-station (13LY) trials. 126 F10:11 headrows evaluated for phenotypic uniformity and stem solidness, harvested individually, and 96 bulked as Breeder seed (R).
- 2019-Multi Breeder seed increased under MTA with Northern Seed.

Table 1. Agronomic characteristics of MTCS1601 vs. a set of solid-stem varieties, 2016-2018 ^{1/}												
Variety	Test	Winter	Headir	ng date	Plant	Protein	Stem	Saw fly	Stripe			
	w eight	survival			height		solidness	cutting	rust			
	lb/bu	%	Julian	Calendar	in	%	5-25	%	%			
location-years	37	1	15		38	39	21	13	2			
Judee	61.5	49	159.6	9-Jun	30.3	13.1	20.8	33	7			
Loma	60.1	46	162.8	12-Jun	28.3	12.8	20.5	26	9			
MTCS1601	<u>61.6</u>	61	159.8	9-Jun	29.8	12.8	19.3	35	10			
MTS1588	61.2	52	160.9	10-Jun	28.0	12.8	<u>23.2</u>	<u>6</u>	7			
Warhorse	60.6	52	161.4	10-Jun	29.6	<u>13.4</u>	21.8	6	4			
LSD (0.05)	0.3	12	0.5		0.6	0.2	1.0	11	ns			

1/ = includes 2018 Intrastate and 2018 Off Station, and 2016-2018 Saw fly tests

bold = indicates highest (or most desirable) value within a column

bold = indicates varieties with values equal to highest variety within a column based on Fisher's Protected LSD (p =0.05)

Table 2.	Stem solidness	s ratings of	MTCS1601	compared	to other	solid-stemn	ned variet	ties, (2016	-2018)

	Stem Solidne	ss Rating (sca	le 5-25, higher	r = more solid)	Stem Solidness by location, 2016-2018						
	2018	2017	2016	2016-18	Billings	Bozeman	Conrad	Havre ^{1/}	Moccasin		
location-years	9	6	6	21	2	4	3	11	1		
Judee	22.3	19.1	20.0	20.8	22.0	18.5	22.5	20.6	<u>24.4</u>		
Loma	22.5	20.1	17.9	20.5	22.8	18.5	20.5	20.9	20.6		
MTCS1601	20.1	18.4	19.0	19.3	18.4	18.3	19.4	19.8	19.9		
MTS1588	<u>23.8</u>	<u>23.2</u>	<u>22.3</u>	<u>23.2</u>	23.0	<u>23.1</u>	<u>23.3</u>	<u>23.2</u>	23.4		
Warhorse	22.5	21.3	21.4	21.8	22.6	21.0	22.2	21.9	22.3		
LSD (0.05)	1.2	2.2	1.7	1.0	ns	2.7	2.4	1.4	2.5		
bold = indicates	highest value	w ithin a colum	n								
bold = indicates	varieties with	values equal t	o highest varie	ety within a col	umn based (on Fisher's Pr	otected LSD	(p =0.05)			
1/ includes Carter	, Gildford, and	d Loma									

<u>General performance and characteristics</u>: MTCS1601 was selected as a solid-stem Clearfield line, and was targeted into the MSU Sawfly trial for initial evaluations. MTCS1601 is a medium-maturity, semi-dwarf, semi-solid stem HRW wheat line with average grain protein content, and good test weight (Table 1). Testing from 2016 to 2018 has shown that stem solidness of MTCS1601 over years and locations is significantly lower than predominant solid-stem cultivars Loma, Judee, and Warhorse (Table 2) and cutting of MTCS1601 by wheat stem sawfly has been relatively high, significantly greater than Warhorse and MTS1588 (Table 1).

Grain yield performance of MTCS1601 has been good in comparison to solid-stem lines (Table 3) and a larger set of cultivars, including Clearfield lines, SY Clearstone 2CL and Brawl CL Plus (Table 4). Currently, no solid-stem Clearfield winter wheat cultivars are available in Montana. Relative to SY Clearstone 2CL, MTCS1601 is similar in yield (Table 4), 2 lb./bu. higher in test weight, 2 days earlier in heading, 3.5 inches shorter, and has better resistance to cutting by wheat stem sawfly) (Table 5). Relative to Brawl CL Plus, MTCS1601 is 5.3 bu./acre higher in yield (Table 4), 1 lb./bu. lower in test weight, 6 days later in heading, 2.1 inches taller, and 0.6% lower in grain protein (Table 5). In 6 heavily-infested wheat stem sawfly environments, MTCS1601 yielded similarly to Brawl CL Plus and SY Clearstone 2CL and had significantly lower sawfly cutting damage than SY Clearstone 2CL (Table 6).

Table 3. Yield of M	TCS1601 v	vs.asetof	solid-ste	m varietie	s, 2016-20	18 ^{1/}					
Variety	Variety Districts										
	1	2	3	4	5	5	6- Sidney &	Location			
	Kalispell	Bozeman	Huntley ^{2/}	Moccasin ^{3,}	Conrad ^{4/}	Havre ^{5/}	Williston	S			
location-years	1	4	8	4	7	13	2	39			
MTS1588	94.1	108.5	74.6	63.1	<u>66.8</u>	<u>64.0</u>	55.7	<u>71.5</u>			
MTCS1601	85.4	113.5	77.9	63.7	64.7	60.6	56.4	71.1			
Loma	87.6	109.9	76.0	66.1	66.4	58.1	59.3	70.2			
Warhorse	92.0	99.5	79.0	62.8	55.1	57.7	57.2	67.3			
Judee	94.5	102.3	72.5	64.3	60.8	56.7	55.3	67.0			
LSD (0.05)	ns	ns	ns	ns	4.3	4.9	ns	2.6			
bold = indicates highest	value within	a column									

bold = indicates varieties with values equal to highest variety within a column based on Fisher's Protected LSD (p =0.05)

1/ = includes 2018 Intrastate and 2018 Off Station, and 2016-2018 Saw fly tests

2/ includes data from Fort Smith, Hardin area, Molt, Rapelje

3/ includes data from Belt, Denton, Geraldine, Highwood

4/ includes data from Choteau, Cut Bank, The Knees, Shelby

5/ includes data from Big Sandy, Gildford, Loma, Turner

Table 4. Yield of M	TCS1601 v	vs.a setof	varieties	(including	Clearfiel	d varietie	s), 2018 ^{1/}	
Variety		l		Districts				All
	1	2	3	4	5	5	6- Sidney &	Location
	Kalispell	Bozeman	Huntley ^{2/}	Moccasin ^{3,}	Conrad ^{4/}	Havre ^{5/}	Williston	s
location-years	1	1	6	4	5	4	2	23
Loma	87.6	139.7	92.7	66.1	67.6	55.2	59.3	<u>75.0</u>
MTS1588	94.1	134.5	91.6	63.1	<u>68.9</u>	58.1	55.7	74.7
SY Clearstone 2CL	89.6	<u>142.4</u>	93.9	67.4	65.3	55.8	55.3	74.4
MTCS1601	85.4	135.3	95.4	63.7	66.4	49.6	56.4	73.3
Yellowstone	83.6	137.3	92.6	62.0	65.6	56.7	59.8	73.3
Warhorse	92.0	120.7	96.8	62.8	57.2	51.1	57.2	71.7
Judee	94.5	128.2	87.9	64.3	60.7	52.0	55.3	71.1
Brawl CL Plus	86.9	115.3	90.6	53.6	60.1	51.1	49.7	68.0
LSD (0.05)	ns	11.6	ns	ns	7.2	ns	ns	3.6
1/ = includes 2018 Intrast	ate and 2018	3 Off Station	tests					
2/ includes data from For	t Smith, Hard	in area, Molt,	Rapelje					
3/ includes data from Belt	, Denton, Ge	raldine, High	w ood					
4/ includes data from Cho	teau, Cut Ba	nk, The Knee	s, Shelby					

5/ includes data from Big Sandy, Gildford, Loma, Turner

Table 5. Agronomic characteristics of MTCL1601 vs. a set of varieties (including Clearfield varieties), 2018

Variety	Test	Winter	Headir	ng date	Plant	Protein	Stem	Saw fly
	w eight	survival			height		solidness	cutting
	lb/bu	%	Julian	Calendar	in	%	5-25	%
location-years	23	1	9		23	23	5	7
Brawl CL Plus	<u>63.0</u>	45	154.5	4-Jun	27.5	<u>13.7</u>		26
Judee	61.9	49	160.4	9-Jun	30.5	13.5	23.3	39
Loma	60.4	46	163.4	12-Jun	28.3	13.1	22.3	29
MTCS1601	62.0	61	160.5	10-Jun	29.6	13.1	20.7	34
MTS1588	61.8	52	161.8	11-Jun	27.9	13.0	<u>24.2</u>	<u>3</u>
SY Clearstone 2CL	60.0	48	162.6	12-Jun	33.1	12.9		60
Warhorse	61.0	52	161.9	11-Jun	29.6	13.7	22.7	5
Yellowstone	60.2	62	163.0	12-Jun	31.7	12.8	6.0	57
LSD (0.05)	0.5	12	0.9		0.8	0.3	1.5	19

1/ = includes 2018 Intrastate and 2018 Off Station tests

bold = indicates highest (or most desirable) value within a column

bold = indicates varieties with values equal to highest variety within a column based on Fisher's Protected LSD (p =0.05)

Table 6. MTCL1601:	Yield Performance unde	r Sawfly Pressure
(test average cutti	ng <u>></u> 10%) and % Sawfly C	utting (2018)
	Yield	Sawfly
Variety	bu/a	Cutting
		(%)
location-years	6	6
Brawl CL Plus	60.6	29
Judee	58.7	45
Loma	62.7	33
MTCS1601	60.0	39
MTS1588	66.0	<u>3</u>
SY Clearstone 2CL	59.7	68
Warhorse	55.6	6
Yellowstone	59.4	65
LSD (0.05)	ns	20
bold = indicates highest va	lue w ithin a column	

Crop tolerance to herbicide. Prior to cultivar release, data demonstrating adequate crop tolerance to Beyond® herbicide must be summitted to BASF and approved. To this end, Crop Qualification data from seven MT trials over three years has been submitted to BASF for evaluation and potential approval. A summary of crop yield data [control & 2X herbicide rate] in comparison to the genetic standard [SY Clearstone 2CL] is shown in Table 7.

Milling and Baking Quality. End-use quality of MTCS1601 has been evaluated over a three-year period (n=10) in Montana trials. In the 2016 & 2017 Sawfly trials, MTCS1601 had good milling qualities, intermediate dough mixing characteristics, and acceptable loaf volume (Table 8). In the 2017 Advanced trial, end-use qualities of MTCS1601also appeared acceptable for commercial production (Table 9).

Table 7. Yield of MTCS1601 vs. SY Clearstone 2CL, 2016-2018 Clearfield Qualification Tests

Variety		Districts						
	1	2	3	Locations				
	Kalispell	Bozeman ^{1/}	Huntley					
location-years	1	4	2	7				
SY Clearstone 2CL 2X Beyond	103.9	112.9	114.6	112.1				
MTCS1601 2X Beyond	90.5	101.2	120.1	107.7				
SY Clearstone 2CL untreated	109.4	104.3	116.5	105.8				
MTCS1601 untreated	91.5	100.4	120.3	104.8				
LSD (0.05)	ns	ns	ns	ns				

1/ = includes Fort Ellis and Northern Seeds Gallatin Valley tests

Table 8. Mill and bake characteristics of MTCS1601 vs. a set of varieties, 2016-2017 Sawfly Trials

Variety	PPO ^{1/}	Kernel		Flour			Mixograph		Baking			
		hardness	yield	protein	Ash	tolerance	mix time	absorption	mix time	absorption	volume	
			%	%	%	(1-6)	min	%	min	%	сс	
location-years	6	6	6	6	6	6	6	6	6	6	6	
Judee	0.274	77.4	69.9	12.6	<u>0.39</u>	3.3	6.4	66.5	10.7	76.4	<u>1168</u>	
Warhorse	0.262	84.6	69.3	13.0	0.43	2.2	5.5	68.8	9.9	78.5	1143	
Loma	0.151	79.2	71.4	12.6	0.40	3.0	8.0	69.4	18.1	79.8	1134	
Yellowstone	0.271	75.2	70.4	12.1	0.41	4.2	9.0	66.8	17.2	77.3	1080	
MTS1588	0.330	68.4	71.5	12.6	0.39	3.2	7.4	69.3	18.6	79.2	1074	
MTCS1601	0.317	70.0	<u>71.7</u>	12.1	0.39	3.0	5.4	66.0	10.6	76.3	1033	
LSD (0.05)	0.048	4.2	1.2	ns	0.01	1.1	1.6	ns	3.7	ns	84	
bold = indicates highest	value wi	thin a colu									•	
bold = indicates varietie	es with va	alues equa	l to highe:	st variety v	w ithin a c	olumn base	d on Fisher	's Protected	LSD (p =0	.05)		
^{1/} low is best for noodle	S		3 -							,		

Tal	Table 9. 2017 Advanced Winter Wheat Nursery Mill & Bake (Exp. 14) 4 locations											
Location: Means Across Locations												
Sample No.	Variety	Одд	Single kernel hardness	Wheat Protein, % (12%m.b.)	Flour Yield, %	Flour Protein, % (14%m.b.)	Wheat Ash, %	Flour Ash, %	Mixing Tolerance	Bake Mixing Time, min	Bake Water Absorption, %	Loaf Volume
11	MT1642	0.137	76.1	13.4	70.2	12.4	1.40	0.40	<u>3.8</u>	14.2	79.6	<u>1191</u>
1	Judee	0.235	82.8	13.6	70.1	12.8	1.42	0.41	3.5	7.8	76.3	1176
3	Warhorse	0.250	90.0	<u>14.1</u>	69.2	<u>12.9</u>	1.38	0.43	1.5	7.7	79.0	1103
13	MT1683	0.281	76.6	13.2	70.4	12.1	1.39	0.43	2.8	14.9	79.0	1074
5	MTCS1601	0.341	73.6	13.4	71.3	12.5	1.41	0.40	2.8	10.6	77.3	1071
2	Decade	0.291	81.1	13.3	69.6	12.3	1.36	0.41	2.8	20.0	<u>82.6</u>	1054
4	SY Wolf	0.303	77.0	13.2	69.9	12.2	1.38	0.41	0.8	7.9	74.2	1031
	Average	0.234	78.7	13.4	70.3	12.4	1.37	0.42	2.8	11.0	78.2	1080
	LSD (0.05)	0.052	4.4	0.5	1.0	0.5	ns	0.01	0.9	3.6	3.0	63
C.V. 15.4 3.9 2.6 0.9 2.6 4.2 2.4 22.4 22.7 2.7 4.											2.7	4.1
	cold = indicates highest value within a column											
<u>bold</u>	Image: Indicates highest value within a column Image: Im											

Disease resistance: MTCS1601 is moderately resistant to stripe rust based on Montana evaluations (Table 1). In addition, MTCS1601 wheat was tested for reactions to natural infections of *Puccinia striiformis* f. sp. *tritici* in Pullman and Mount Vernon, WA from 2016 to 2018. Across locations and over years, MTCS1601 had highly resistant reaction with infection type (IT) 2 to moderate resistant reaction (IT 5) with severity 2-40%. In contrast, the susceptible check (PS279) was highly susceptible (IT 8, severity 80-100%) in the late growth season.

MTCS1601 is moderately susceptible to stem rust based on seedling stem rust evaluations conducted by the USDA-ARS Cereal Disease Lab in 2016. In seedling evaluations at St. Paul, MN, MTCS1601 was resistant to several *Pgt* races from the United States, including QCCSM, QFCSC, and TPMKC, but susceptible to QTHJC, RKRQC, and TTTTF. MTCS1601 is not resistant to the Ug99 stem rust race group.

<u>Purification/seed stocks</u>: Increase of MTCS1601 was initiated in 2017 when a phenotypically-uniform, herbicide-treated fill plot of MTCS1601 (F10) was hand harvested and threshed after collection of 130 individual heads. Breeder seed was increased at Fort Ellis in 2018 using Clearfield seed increase protocols. As a backup seed purity option, 126 F_{10} -derived F_{11} headrows were grown at Bozeman, evaluated for phenotypic uniformity and stem solidness, harvested individually, and 96 bulked as breeder seed (R =redundant). Breeder seed of both lots is being increased by Northern Seed under a Material Transfer Agreement in 2019.

Summary:

MTCS1601 is a medium-maturity, semi-dwarf, semi-solid stem HRW wheat line with two generesistance to Beyond® herbicide, average grain protein content, and good test weight (Table 1). MTCS1601 has intermediate stem solidness but relatively poor resistance to cutting by wheat stem sawfly in heavily-infested environments. MTCS1601 does have good yield potential and has performed well in Montana relative to other Clearfield lines in environments not heavily infested with sawfly. MTCS1601 has moderate resistance to stripe rust and adequate end-use qualities for commercial production.